
Annals of the History of Computing, Vol 1, No 1, Jan 1984
Special Issue: FORTRAN’s Twenty-Fifth Anniversary

Pages 28-32
Scanned and transcribed by Loren Meissner, 6 May 2016

Institutionalization of FORTRAN
JEANNE ADAMS, CHAIR

CONTENTS
Early FORTRAN User Experience: Herbert S Bright
The Emergence of FORTRAN IV from FORTRAN II: Wil-

liam P Heising
Early FORTRAN at Livermore: Robert A Hughes

Early FORTRAN User Experience
I want to mention a little-known aspect of how Westinghouse-
Bettis, a nuclear-power-reactor development laboratory, together
with a lot of other groups who ultimately became known as “the
nuclear-codes crowd,” got interested in large-scale computing in
the middle 1950s.

Systems of elliptic partial differential equations are used to de-
scribe fixed-geometry nuclear-power reactors for criticality cal-
culations. One group, reputed to be the world’s “outstanding au-
thorities,” investigated the use of digital computers to perform
such calculations by relaxation or successive-approximation tech-
niques. They concluded on theoretical grounds that the rate of ap-
proach to a correct solution, which must decrease with problem
size, went to zero for numerical models of order 600, Using what
was then the world’s most powerful computer, the NORC (Naval
Ordnance Research Calculator), they performed experiments that
seemed to support that conclusion.

Problems of the order 2500 were already in use for two-dimen-
sional reactor design work, represented by passive electric-net-
work models. Using a special-purpose analog simulator, one such
solution took about six weeks of day-and-night chain-gang-style
labor for several skilled technicians, The 600-limit “proof” had
pretty well convinced the reactor designers that digital computers
weren’t going to help them.

A team of mathematicians, headed by Elizabeth Cuthill at the
U.S. Navy’s David Taylor Model Basin near Washington, con-
cluded that the proof applied to the mathematical technique in-
stead of to the problem. Using a new technique, they wrote a pro-
gram to solve problems up to Order 2500.

The machine they had available was a UNIVAC I computer that
had about as much memory as a modern pocket-size key-driven
calculator and executed roughly 1000 instructions per second.
The program took between 30 and 40 hours of machine time per
solution, but. it ran! Results were correct and usable. It was used
to design several reactors.

Although Betty would never have named anything after herself,
her 2500-point program became known as the Cuthill Code – now
a household word in the nuclear-codes community. Without such
a successful demonstration that the world’s outstanding authori-
ties could be wrong, there would have been no early large-scale
nuclear codes. The demand for more and more powerful comput-
ers would not have gained a major push.

When I recently discussed this development with a distin-
guished computer historian, I was startled to learn that few people
in other fields of applied mathematics have even heard of the
work. As of today, he will no longer be able to make that state-
ment.

Criticality calculations gave information for a particular design
and a particular set of operating conditions about the extent to
which the chain reaction was supercritical. These calculations

took a lot of machine time, and memory space was extremely ex-
pensive, so they were hand-polished to maximum efficiency in
time and space. In 1957 one- and two-dimensional versions were
running on an IBM 704.

To simulate the reactor core through its working lifetime, it was
necessary to perform a depletion or burnout calculation using the
output of a criticality calculation to determine at each point inside
the core what neutron bombardment had done to the core materi-
als. That turned out to be an enormously complex problem. For a
250-point one-dimensional solution that was running at that time,
for example, the depletion calculation included 30,000 lines of
assembler code. The core designers were planning two- and three-
dimensional codes.

Understanding of the behavior of the materials under nuclear
bombardment grew rapidly. This further complicated the coding
problem, which, of course, was accompanied by a huge mainte-
nance problem. The question arose: Could we do that much cod-
ing and maintenance?

As if that weren’t enough pessimism, the people in the Mathe-
matics Department at Bettis Laboratory were pessimistic about
the still-fetal FORTRAN. We had expected that FORTRAN, pre-
suming it would be available some day, could never construct
code that was really efficient, either in time or in space. Our in-
tention to take a look at FORTRAN was accompanied by the as-
sumption that it was going to produce rotten code – as a matter of
fact, on occasion it did. Some of the FORTRAN object code was
amazingly efficient, but we hadn’t yet learned how to predict or
control that aspect of compiling.

Fortunately, the depletion calculations only got executed once
per time step. Unlike the criticality calculations, although they
took a lot of code, they didn’t have to be efficient; they only had
to be correct. To our delight, FORTRAN produced correct code,
and the amount of labor required to debug and maintain the code
– and even to change it substantively – was remarkably small.

In the first issue of the Annals [Herb Bright, “FORTRAN Comes
to Westinghouse-Bettis, 1957.” Annals of the History of Compu-
ting, Volume 1 Number 1 (July 1979), pp. 72-74], I described a
FORTRAN test problem that was part of a depletion calculation. If
the solution was correct – even if its resulting code was inefficient
– it would be important; this was not just an exercise.

The expression shown for gamma in Figure 1 was computed by

incrementing several variables to generate a table for what was
known as “gamma of tau for the inhour formula.” The independ-
ent variable was the amount of time each material was in the re-
actor core under neutron bombardment. The result was used to
calculate the behavior of each point in a geometric array of mate-
rial as a function of time. The story in the Annals gave some op-
erating details of our first test of FORTRAN using that calculation.

Late one Friday afternoon – the Friday before a SHARE meet-
ing – the Bettis mailman showed up with an unmarked box of
cards with no documentation. Lou Ondis, Ollie Swift, and I were
standing in a hallway when the mystery package came along. Un-
fortunately Jim Callaghan’s carpool had already removed him
from the scene. Ollie had written a report specifying the “gamma
of tau” calculation, on the basis of which Jim had written a
FORTRAN test program. Jim had only this shiny gray thing
marked “FORTRAN Programmer’s Manual,” a sort of fat brochure

that in retrospect was incredibly accurate in comparison with typ-
ical modern documentation. Jim had spent about one afternoon
writing this program. To give you a comparison with our previous
methods, we later estimated it would have taken about two weeks
to have written this amount of code in assembly language and an-
other week or two to debug it.

Lou suspected that the anonymous box of cards might be the
overdue FORTRAN compiler. Ollie suggested a way to find out.
Hang a full set of 10 blank tapes on the 704 and act as though we
believed this was, in fact, FORTRAN. Load the compiler and the
source program – it did not require input data, because one set of
test values was built in – and attempt to compile, load, and exe-
cute.

Lou got through those processes successfully. After a few
minutes of machine activity, we wound up with a single, printed,
English-language diagnostic of incredible specificity. Figure 2
gives the “diagnostic program results.”

We looked at the card. The diagnostic was right! Lou repro-

duced the card with a comma stuck in the right place. We recom-
piled. After a little whiff of computing, there came something like
28 pages of output (see Figure 3).

There were several errors in our use of Roy Nutt’s FORMAT
phase, but the results rang like old crystal. We random-
spotchecked about 15 values. I was convinced that all of the out-
put was essentially good to the six decimal digits printed. We re-
marked jn the Annals (our story had first been published in 1971)
that a couple of hundred compiler fixes down the road, it was hard
to believe it had happened. I still feel that way.

John Backus has commented that although his FORTRAN group
intended to distribute the first FORTRAN compiler in binary-card
form, only one or two decks actually got punched. They used up
several reproducing card punches per binary deck produced; the
machinery couldn’t stand the mechanical load. The fact that the
newborn FORTRAN got to us on the last working day before a
SHARE meeting – and that Jim had produced a workable test pro-
gram that was ready to try the compiler – represented incredible,
blind good luck.

The Emergence of FORTRAN IV from FORTRAN II
My subject is slightly broader than the emergence of 704
FORTRAN II to 7094 FORTRAN IV. I’m going to talk about the
evolution of 704 FORTRAN during the period from 1957 to 1964
from my personal viewpoint. During this period I had various re-
sponsibilities in connection with FORTRAN.

My first responsibility was to assist on the transfer of the
FORTRAN project from the Programming Research Group under
John Backus to the Applied Programming Department. Later I

was manager of 7094 programming, and still later I was respon-
sible for coordinating FORTRAN processor implementations
within IBM. In 1957 the status of FORTRAN was that the initial
compilers were completed by the Programming Research Group,
which had embarked on a significant. improvement called
FORTRAN II that has enabled users to break up the program – a
large application – into independent compilations. This was an
important advance to which attention should called. In fact, it was
the genesis of many of the linking loaders we have today. The
idea of having an application program written not as the output of
a single compilation but of many was new. It greatly expanded
the possible use of FORTRAN because it meant that if some small
part of the application required assembly-language programming
it could be done without writing a separate routine or function in
the FORTRAN language.

 When I became involved with the Applied Programming De-
partment, there were approximately 10 people to take over the
work of Backus’s Programming Research Group. Most of these
people were capable but junior in experience in programming.
Our first responsibility was to learn the structure of the compiler.
Backus’s group had an informal management style, and there
were some things that bothered us a little. For example, the dif-
ferent sections were written in two different assembly languages
– certain sections in one and certain in the other. When we finally
got Section 2, the Programming Research Group had lost the sym-
bolic code so it came over to us in absolute.

The most important initial project undertaken in Applied Pro-
gramming was to get a version ready for the IBM 709, which had
been announced in January 1957 and was first shipped late in
1958. Because the group was new, a minimum number of changes
were made in order to make FORTRAN operative on the 709. This
machine had different input/output, and the configuration we
chose to support was 8K main memory (instead of 4K) with a
drum. The 8K main storage meant we had to be a little bit careful
in shoehorning everything into storage.

The original plan for the 709 programming support was to have
a SHARE Operating System (SOS) designed by the most experi-
enced users in SHARE. It was basically a design to surround the
assembly language program with some nice debugging tools. One
group in programming would work on SOS, and the FORTRAN
work would go on in parallel. The initial thinking was that we
would integrate FORTRAN within SOS. We ran into schedule dif-
ficulties. There were some technical difficulties, too, in that the
FORTRAN II approach of modular programs was not well matched
with the format of the deck of SOS. There was some allowance to
match the two, but I don’t think all the technical aspects had been
worked through. In any case, we weren’t able to integrate. The
first 709 FORTRAN came out as a stand-alone system, not within
SOS, and used a loader very much like the original linking loader
of the FORTRAN system on the 704.

The 704 and 709 FORTRANs were successful quite early – es-
pecially FORTRAN II – but the penetration on users, so to speak,
was rather uneven. The most experienced users (who dated from
the days of the IBM 701) tended to retain assembly language pro-
gramming, and the newest and least sophisticated newcomers to
computing were most frequently FORTRAN users. Nonetheless,
the technical basis of FORTRAN was sufficiently sound that usage
was like a snowball going downhill.

Soon there were hundreds of customers making hundreds of
suggestions for improvements. They would find bugs and send
them in – not only error reports, but in many cases the fixes would
come in along with the reports. Many suggestions applied to such
matters as improvement of diagnostics – little practical things –
and it was as if there were hundreds of people working on im-
proving FORTRAN. The suggestions just poured in, and we put
them in as fast as we could.

A significant event occurred in 1958. The German Applied
Mathematics Society (GAMM) proposed to the Association for
Computing Machinery (ACM) that an international algorithmic

language be developed, and SHARE requested that Backus be its
representative. He participated in that effort and gave a report in
the fall of 1958. As a result of this report, SHARE was very en-
thusiastic about the possible future of ALGOL. In fact, SHARE
went so far as to pass a resolution requesting IBM to implement
ALGOL.

During a period of about a year and a half when we were mak-
ing minimal improvements on FORTRAN, we were also working
up an ALGOL experimental compiler. After about two years,
IBM and SHARE jointly realized that ALGOL was not going to
supersede FORTRAN, and that we should look toward longer
range improvements in FORTRAN. We decided to clean up
FORTRAN II; this was the basis of the transition from FORTRAN
II to FORTRAN IV. The cleanup consisted of a lot of details such
as getting rid of machine dependent irregularities of the language,
and introducing and straightening the treatment of COMMON and
EQUIVALENCE so that customers didn’t have to have special
courses on how to write EQUIVALENCE statements. Many
changes were planned.

One important limiting factor, of course, was that we wanted
customers who had FORTRAN II programs to be able to preserve
them. SHARE planned and wrote a translator written in
FORTRAN to translate from FORTRAN II to FORTRAN IV. Don
Moore, Jay Allan, and Paul Rogoway wrote that program, [J J
Allen, D P Moore, and H P Rogoway, “SHARE Internal
FORTRAN Translator (SIFT),” Datamation 9, 3 (March 1963), 43-
46] and it was used successfully on the conversion of FORTRAN
II to IV.

Early FORTRAN at Livermore
The Lawrence Livermore National Laboratory (LLNL), located
about 40 miles due east of San Francisco, is a facility for nuclear
research and weapons design. Being only slightly younger than
the modern digital computer, LLNL’s history is closely tied to
that of the computer industry in that it is:

1. A leader in the application of computers (and FORTRAN) to
the solution of large-scale scientific problems and to major sys-
tems software implementations.

2. Staffed by experts in both software and hardware design.
3. One of the largest concentrations of computing power in the

world, housing both the Octopus Computer Network and the
Magnetic Fusion and Energy Computer Center. The latter is a na-
tional network.

LLNL has a user community of 8000 employees, of whom 4000
are scientists or engineers. It has 2000 time-sharing terminals, and
works on scientific applications in mathematical physics and bio-
medical research. Its system software consists of operating sys-
tems, language processors, and computer graphics.

Computing at LLNL began with the first commercially availa-
ble machines, the UNIVAC I in 1952 and its successors, the IBM
CPC [Card-Programmed Calculator], an IBM 701 in 1954, and
two IBM 650s. There were some early compiler efforts. Kl and
K2 were experimental algebraic compilers for the IBM 701 based
on flowchart algorithms. K3 was an IBM 704 compiler designed
to maintain the integrity of conventional mathematical notation.
It required three cards per statement, the first and third being used
for exponents and subscripts. was named K3 for “Kent Ellsworth
and the world’s third compiler.” K3 had a successful first run. It
then became the world’s second Spruce Goose in the wake of
FORTRAN’s growing popularity.

Interest in FORTRAN began in 1955, when IBM announced
plans for an automatic coding system for the IBM 704 (LLNL
eventually had four 704s). In those early days, LLNL was one of
the few organizations that used computers and was aware of the
FORTRAN project. Sidney Fernbach, head of the Computation
Department, spearheaded an effort to gain firsthand knowledge of
FORTRAN’s implementation and potential as a programming aid.
I was sent to New York in the summer of 1956 to work with the
FORTRAN development team, led by Backus.

From the advent of FORTRAN in early 1957, an extended
FORTRAN called LRLTRAN became the most used programming
language at LLNL. It was typically used to compile compilers
(FORTRAN-FORTRAN) and to maintain up-to-date software for
succeeding generations of LLNL’s large mainframes.

The first FORTRAN-FORTRAN was that of the IBM 709 (LLNL
had two in 1963) – the first LRLTRAN compiler – with no exten-
sions to the language. The first two extensions appeared with the
Livermore Automatic Research Computer (LARC) (1960), a dec-
imal machine contemporary with the IBM 7030 (Stretch). The
LARC’s FORTRAN compiler came from the new Computer Sci-
ence Corporation and allowed a parameter statement with sym-
bolic names for declarative constants, and alphanumeric and nu-
meric statement labels. Early FORTRANs lacked mixed mode
arithmetic or byte declarations; the latter shortcoming was decried
by system programmers who felt “betrayed” by the language de-
signers. IF THEN ELSE was added in 1977. Most of LRLTRAN ex-
tensions are now “standard” under ANSI Fortran 77 specifications.
Thus, after years of new user comments such as, “That’s not
FORTRAN,” LRLTRAN is again FORTRAN (well, almost).

Meetings in Retrospect

FORTRAN Activities at SHARE Meeting
Elliott C Nohr
Pages 65-69

The FORTRAN exhibit displayed at NCC ’82 and the IBM
Santa Teresa Laboratory was subsequently shipped to the
SHARE 59 meeting in New Orleans, August 22-27, 1982. At
a special FORTRAN session chaired by John Ehrman, Elliott
Nohr of IBM [General Products Div., San Jose] spoke about
the early days of FORTRAN and how SHARE and IBM
worked together to make it more widely used. We are present-
ing an edited version of Nohr’s paper with SHARE’s permis-
sion.

…
SHARE XIV was held in Los Angeles in February 1960; Donn
Parker was chairman of the FORTRAN committee. The topic be-
ing discussed then was whether assembly-language instructions
should be permitted in the middle of FORTRAN programs. It was
argued that this would improve the efficiency, and it was also ar-
gued that one would lose all compatibility. After a prolonged
floor argument, SHARE members agreed that symbolic instruc-
tions should not be added. It is true that IBM had something called
FORTRAN III, which was really FORTRAN II with symbolic in-
structions added, that had been distributed to a very few people.
By this time, FORTRAN had a large number of active users.

In August 1960, George Mealy (RS-Rand) wrote to the
FORTRAN chairman on the subject of “Whither FORTRAN,”
Some quotes from this letter are:

The committee has proceeded on a course of jacking FORTRAN
up inch by inch; a bit more leverage has been required at each
step.

We are rapidly reaching the point at which only very minor im-
provements can be made within the existing framework. How
do the IBM people feel about spending their lives patching
things up rather than being free to do more creative work? In
short, I think we should stop trying to kid FORTRAN into work-
ing better and completely rewrite it.
SHARE XV was held in Pittsburgh in September 1960, and the

committee met in closed session starting on Sunday afternoon
with 26 of the 28 members present. On that day we were discuss-
ing such things as the G-type format by Jim Porter (General Elec-
tric); the debug package by Bill Hefner (General Electric), Fred
Scaife (Martin Aircraft), and Tom Martin (Westinghouse Elec-
tric); the WD buffered I/O routine; the DE-FAP routine; and the
General Electric 709 FORTRAN format generator by Dorothea
Clark. It was suggested that all of these should be distributed
through the SHARE secretary for field tests. SHARE decided to
appoint a “czar” to oversee the testing of all of the customer-de-
veloped extensions.

After SHARE XV, Bruce Rosenblatt was appointed chairman
of the group. The FORTRAN group was invited back to New York
in January 1961 to listen to a report by the IBM FORTRAN plan-
ning group. The ideas generated at this meeting resulted in a pre-
liminary specification of FORTRAN IV.

At SHARE XVI, held in San Francisco in March 1961, the pre-
liminary specifications were submitted and discussed. This was
the beginning of 7090 FORTRAN IV. One of the differences from
the old FORTRAN I/II and FORTRAN IV was that all of the arrays
were stored backward in FORTRAN I/II. That is, they started with
the highest address and worked back toward the beginning, while
the programs started with the lowest address and worked toward
the end. If the two ever met, you had some problems. The back-
ward arrays also caused problems when working with other sub-
routines in assembler language; you had to keep remembering
that the arrays were actually in reverse order. The new FORTRAN

IV storage was in the forward direction. The EQUIVALENCE
statements were not allowed to use multiple subscripts; therefore,
you had to figure out which element of the array you wanted. If
you wanted a 10 × 10 array, you could not say the fifth element
of the third row; you had to indicate it as if it were a scalar variable
and count which number it was; this led to many errors. Also, at
this time, there were discussions of the label COMMON, adjusta-
ble dimensions, full-word integer arithmetic, and logical IFs as
part of the new FORTRAN IV.

In 1961, SHARE urged IBM to release its new language called
COBOL 61. To digress for a minute, IBM had a commercial lan-
guage available called Commercial Translator (COMTRAN) that
was one of the languages considered when COBOL was devel-
oped, but customers were requesting IBM to provide a COBOL.

Jim Porter (General Electric) had agreed at an earlier date to
work on a format generator because the FORTRAN FORMAT
statement only had an nH character to put in character data. This
was the source of many errors, General Electric worked on a for-
mat generator, but IBM decided not to include it in the IBM sys-
tem,

During 1961, some SHARE members felt that they were having
some difficulty with IBM. A proposal was made that:

The SHARE/FORTRAN Standards and Evaluation subcommit-
tee wishes to report to the executive board that its ability to
communicate with IBM applied programming is rapidly deteri-
orating. This is essentially true in the area of language modifi-
cation, Decisions in this area are filtered through a group that
placed undue emphasis upon compatibility with systems for
non-SHARE machines and is consequently unsympathetic to
our needs.
…
At that meeting it was obvious that the new FORTRAN IV that

was being discussed was going to be significantly different from

FORTRAN II and that a program would be needed to convert
FORTRAN II to FORTRAN IV.

It was decided that a new committee would be formed to take
all current practices and convert them to the new FORTRAN IV.
This project was called the SHARE Internal FORTRAN Translator
(SIFT). The members of the committee were Jay Allen of IBM,
Don Moore of UCLA, and Paul Rogoway of Aerospace Corpora-
tion. The deadline for the conversion project was January 1962,
but the project took until September 1962, at which time IBM ac-
cepted the conversion program SIFT for maintenance and distri-
bution.

In 1962, Fred Scaife (Martin Aircraft) became the chairman of
the FORTRAN committee. In 1963, the FORTRAN committee set
up an advanced-language planning committee to look at an ex-
tended FORTRAN IV. This committee was known as the 3×3 com-
mittee. It was composed of three SHARE members and three IBM
members. The SHARE members were Bruce Rosenblatt (Stand-
ard Oil), Hans Berg (Lockheed Aircraft), and Jim Cox (Union
Carbide-Oak Ridge). The three IBM members were George Ra-
din, Bernice Weitzenhoffer, and C. W. Medlock. The committee
soon realized that in order to make the extensions needed, they
could not keep compatibility with FORTRAN. The language that
resulted was PL/1.

By this time, the IBM 360 system had been announced, and
SHARE members were concerned about getting their programs
to run on the 360; it was a 32-bit machine, and they had a 36-bit
machine. In particular, they were concerned with the accuracy of
their floating-point numbers and how to handle the Hollerith con-
stants that were then six characters per word and now would be
four characters per word, (We also were going from a 6-bit char-
acter to an 8-bit character.)

One last item worth mentioning is character variable type. This
was introduced in February 1967 at SHARE XXX. As most of

you are aware, IBM did listen and implement it, even though we
had to wait 14 years.

